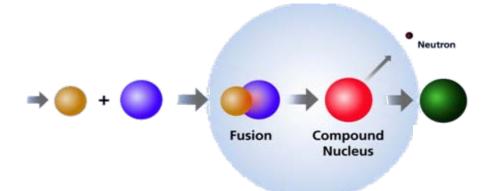
Characterization of the MARS Velocity Filter for Low-Velocity Ions

Cyclotron Institute, Texas A&M University Kevin Lawrence, Florida A&M University Dr. Charles "Cody" Folden III Sunday, August 23, 2009

Content

- Introduction/Background
 - Production of Heavy Elements
 - The Excitation Function
 - Using MARS
 - The Velocity Filter
- Methodology
 - Experimental Methods (Offline experiments using source)
- Results
 - Beam Energy distribution
 - Velocity Filter acceptance
 - Ratio of Dials to ExB
- Conclusion
- Future Work
- Acknowledgement



Introduction

- Our research focuses on the transactinides, the elements with atomic numbers of 104 and higher.
- We are aimed at answering some fundamental questions in nuclear science:
 - What is the heaviest element that can be formed?
 - Does the periodicity of the elements continue as we form these heavier elements?
 - How are these heavy and superheavy elements created?
- We have implemented a program to study the production, decay and chemistry of the heaviest elements.

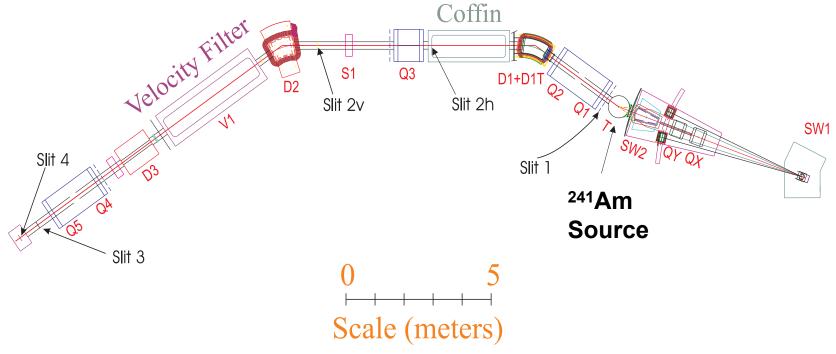
Production of Heavy Elements

- The lighter of the two is used as the beam.
- The "excitation function" contains information on:
 - the reaction cross section,
 - the decay of the excited "compound nucleus and
 - o the deexcitation of the compound nucleus.

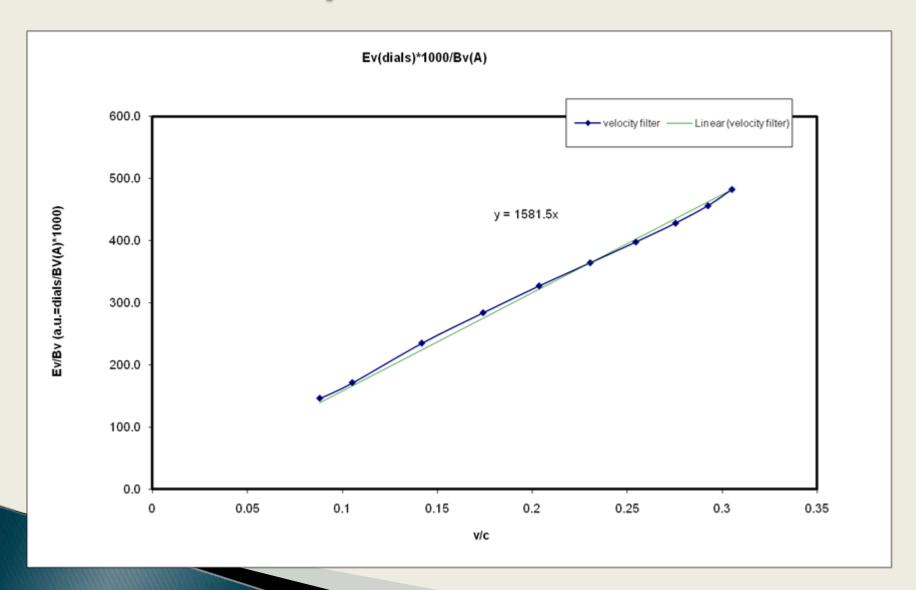
The Excitation Function

The excitation function is narrow and specific.

The velocity of the product is predetermined.


$$E_{CN} = E_P(\frac{m_P}{m_{CN}}) \approx E_P(\frac{A_P}{A_{CN}})$$

$$E = \frac{mv^2}{2} \Rightarrow v = \sqrt{\frac{2E}{m}}$$



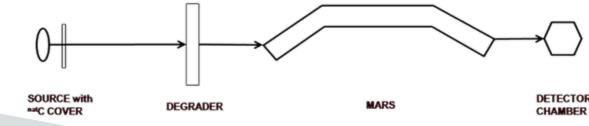
Using MARS

Momentum Achromat Recoil Separator

The Velocity Filter

Methodology

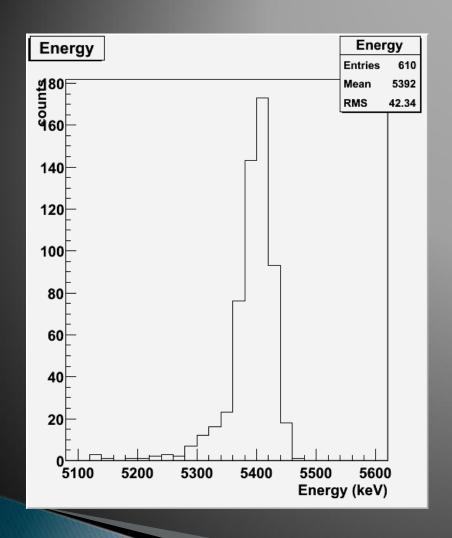
- Calculated the energy distribution of alpha particles.
- Simulated alpha particles going through different degraders using SRIM/TRIM.
- Calculated the velocity of particles after going through natC cover and natAl degraders.
 - Using LISE program's physical calculator.
- Measured the acceptance of the velocity filter.
- Determine the ratio of dials to ExB needed to transmit ions of various velocities.

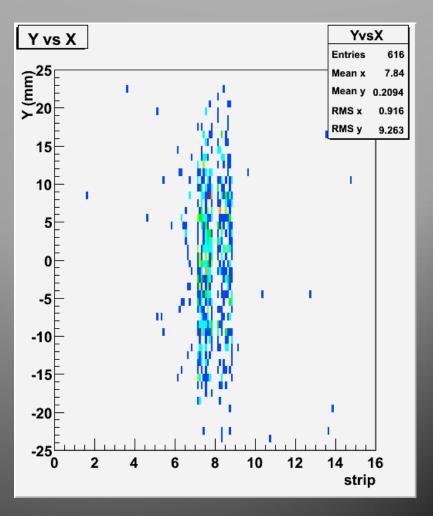


Experimental Methods

 We conducted two offline experiments, using Americium-241 as the source.

We used aluminum degraders of various thicknesses, (6.1 μ m, 12.3 μ m, and 18.4 μ m) to slow down particles.

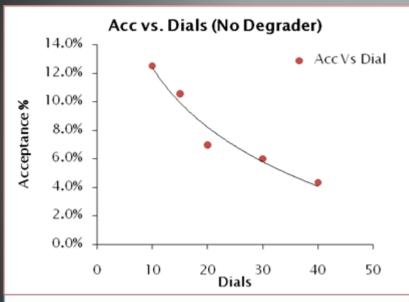

We used different electric field (dials) settings and varied magnetic field (ExB) to determine optimum settings.

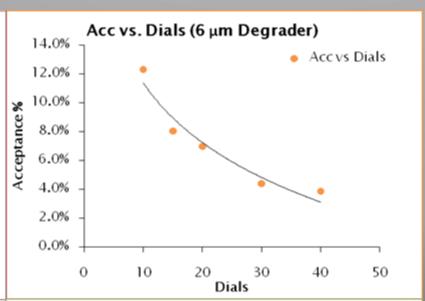


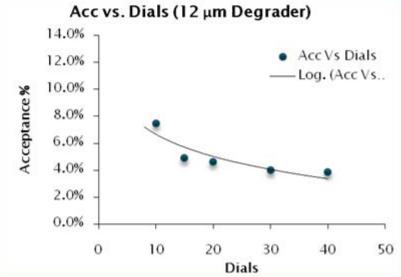
Energy Distribution for $\alpha(^{241}Am)$

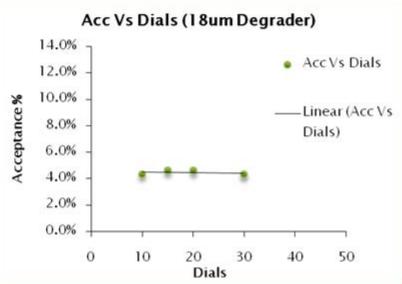
Degrader (μm Al)	v/c	Energy Remaining (MeV)	Δν/ν,
0	5.40%	5.45	±0.02%
6.1	4.89%	4.47	±0.20%
12.3	4.21%	3.30	±0.40%
18.4	3.13%	1.83	±1.05%

Energy and Position Spectrum





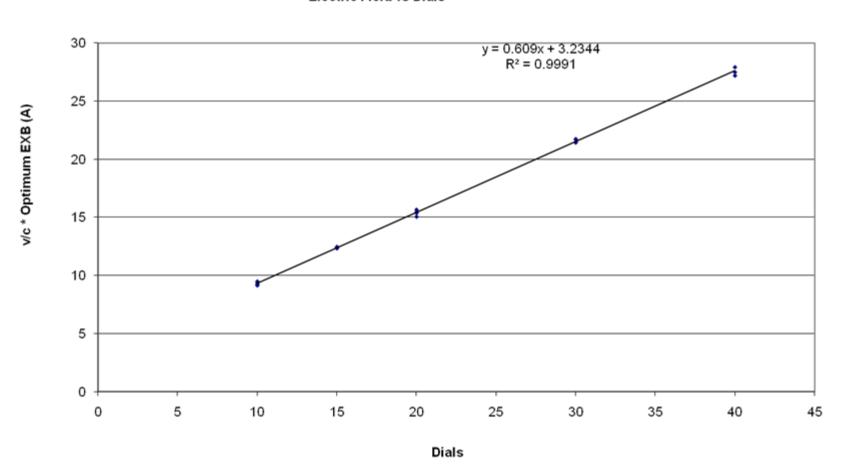

Velocity Filter Acceptance


Dials	No Degrader	6.1µm Degrader	12.3µm Degrader	18.4µm Degrader
10	±6.3%	±6.2%	±3.7%	±2.2%
15	±5.3%	±4.0%	±2.4%	±2.3%
20	±3.5%	±3.5%	±2.3%	±2.3%
30	±3.0%	±2.2%	±2.0%	±2.2%
40	±2.2%	±2.0%	±1.9%	_

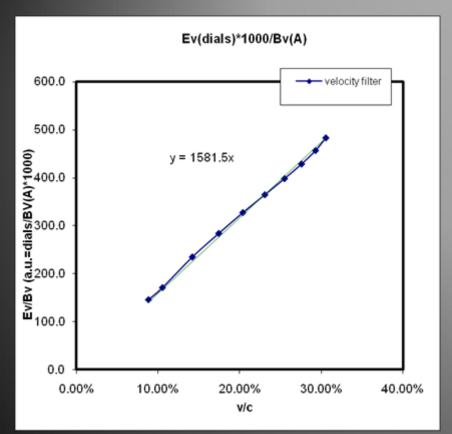
Velocity Filter Acceptance (2)

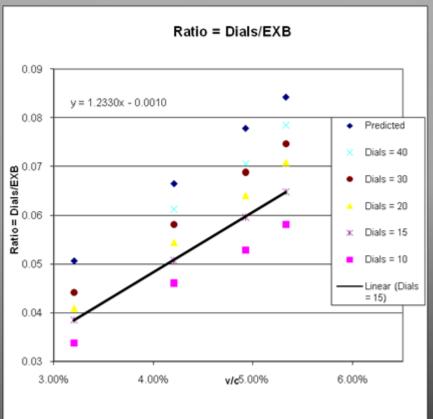
Energy Distribution vs. Velocity Acceptance

 241 Am at initial energy 5.485 MeV w/Cover (µg/cm² natC)


Degrader (µm Al)	v/c	Energy Remaining (MeV)	Δν/ν。
0	5.40%	5.45	±0.02%
6.1	4.89%	4.47	±0.20%
12.3	4.21%	3.30	±0.40%
18.4	3.13%	1.83	±1.05%

Change in acceptance as the electric field changes.


Dials	No Degrader	6.1µm Degrader	12.3µm Degrader	18.4µm Degrader
10	±6.3%	±6.2%	±3.7%	±2.2%
15	±5.3%	±4.0%	±2.4%	±2.3%
20	±3.5%	±3.5%	±2.3%	±2.3%
30	±3.0%	±2.2%	±2.0%	±2.2%


Something proportional to the Electric Field...

Ratio of Dials to ExB

Conclusion

- A large electric field off set exists and must be considered when planning for experiments
- The acceptance of the velocity filter decreases as the electric field increases (dials increases).
- Rate decreases as the electric field increases.
- Based on results, we can't actually run at 40 on the dials.

Future Work

- To determine the correlation between dials and actual voltage produced.
- ▶ Use ¹⁴⁸Gd source to achieve lower velocities closer to 0.02c and determine settings necessary to transmit those ions.
- Conduct beam experiments to more precisely calibrate MARS for low-energy, low-velocity ions.

Acknowledgements

- Funding provided by the National Science Foundation (NSF-REU), Department of Energy (DOE) and the College of Science, TAMU.
- I would like to thank the program director, *Dr. Sherry Yennello*, program coordinator, *Leslie Speikes* and Larry May.
- Special thanks to my advisor, Dr. Charles "Cody" M. Folden and members of the Heavy Element group that provided additional assistance: Marisa Alfonso and Paul Cammarata.